
PHYSICAL REVIEW E, VOLUME 64, 016415
Three-dimensional singularities of a thin plasma slab
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The three-dimensional~3D! nonlinear development of the interchangelike~Rayleigh-Taylor! instability of a
thin slab of plasma exhibits interesting features with respect to its two-dimensional~2D! limit investigated by
Bulanov, Pegoraro, and Sakai@Phys. Rev. E59, 2292~1999!#. We show that, contrary to the 2D case, the 3D
evolution equations remain nonlinear when Lagrangian variables are adopted. Explicit solutions are found by
the use of a generalized hodograph transformation. Both compression and rarefaction singularities are formed.
Local solutions in the neighborhood of the singular points have a generic 2D character.
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I. INTRODUCTION

The formation of finite time singularities, and the chara
terization of their spatial structure, represent one of the m
interesting problems in the study of the time evolution
nonlinear systems. The Rayleigh-Taylor instability of a th
plasma slab@1,2# provides one of the best examples of t
basic nonlinear behavior of a fluid when its equilibrium co
figuration is unstable against infinitesimal perturbations.
addition, in some simplified limits, it is amenable to exa
mathematical solutions that make it possible to study
formation and properties of singularities produced in
nonlinear evolution of the instability. In Ref.@2# Sec. II, the
model of a thin slab of weakly ionized plasma moving und
the pressure of a magnetic field in a background of neu
gas, providing a strong friction force, was considered. T
use of the thin shell approximation, developed in Re
@1,3,4# and@5#, and the simplifying assumption that the sh
configuration remains constant along one spatial~Cartesian!
direction@two-dimensional~2D! approximation# allowed the
authors of Ref.@2# to give an explicit analytical descriptio
of the nonlinear aspects of the Rayleigh-Taylor instability
a 2D configuration in the long wavelength approximation.
this 2D configuration the magnetic field was taken to
constant, and to be aligned along the symmetry directiony. It
was shown that thenonlineardevelopment of the instability
is described by a set of twolinear equations relating the
position of an element of the shell in thex-z plane to the
time t and to the Lagrangian coordinatea marking the shell
element. The solutions of these equations can be expre
in terms of the real and imaginary parts of an analytic fu
tion of a complex variable@7#. This function corresponds to
a conformal transformation between the (a,t) and (x,z)
planes. This analytical function leads to the appearanc
singularities. It was shown that two types of singularities
possible: compression singularities, where the surface d
sity of the shell tends to infinity; and rarefaction singula
ties, corresponding to a tearing of the shell at the posit
where its surface density goes to zero. The occurrenc
finite time singularities, as opposed to singularities that
velop ast→`, and the ill posedness of the initial condition
were also discussed. In this analysis the fact that the fric
1063-651X/2001/64~1!/016415~11!/$20.00 64 0164
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force is dominant on the inertia terms and the long wa
length approximation plays an important role, by making t
mode growth rate increase linearly with the mode wave nu
ber.

The extension of these results to a fully 3D configuratio
where the shape of the shell representing the thin plasma
is not assumed to remain constant along one spatial~Carte-
sian! direction is nontrivial. First the dynamics of the ma
netic field pushing the plasma slab is essentially differen
a 3D configuration. Second, the kinematics of the foil
mains nonlinear, as shown below, even when the confor
transformation method is suitably generalized.

Regarding the first point, in the present paper the ext
sion to the 3D case is obtained by referring to a scalar ef
tive pressure pushing the plasma shell. Furthermore, i
assumed that the pressure at the slab surface is spatially
form, although it may vary with time. The three-dimension
evolution of a plasma shell, pushed by the electromagn
radiation pressure against a background of neutral atoms
provides the friction force, is an example of such a physi
system, and is of interest for space plasma conditions s
as, e.g., in the case of the interaction of the tail of a com
with the solar radiation@6#.

Regarding the second point, in the 2D case the pres
force acts essentially on a curve~the projection of the shell in
the plane perpendicular to the direction of symmetry! and is
thus a linear function of size. In three dimensions the pr
sure force acts on a surface, and is thus a quadratic func
of size. Due to this different scaling with size, in three d
mensions the evolution equations for the position in sp
r5(x,y,z) of a shell element do not become linear, in co
trast to the 2D case, when expressed in terms of timet and of
the Lagrangian coordinatesa and b marking the shell ele-
ment. Because of this nonlinearity, in three dimensions i
not possible to give a general class of solutions in expl
form as was done in two dimensions in terms of analyti
functions of a complex variable. However, general proper
of the solutions can nevertheless be identified analytica
and explicit solutions can be found in terms of a generaliz
hodograph transformation that interchanges dependent
independent variables, i.e., by solving fort,a, andb as func-
tions of x,y, andz.
©2001 The American Physical Society15-1
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The main problem we address in this paper in the stud
3D configurations is the formation of singularities. We r
cover both compression and rarefaction singularities foun
Ref. @2# and, by a proper expansion of the solutions in t
neighborhood of the singularities, we show that both co
pression and rarefaction singularities have a generic 2D c
acter: they tend to develop along a curve, and the pla
dynamics in the plane perpendicular to these curves is
same as for a 2D configuration.

This paper is organized as follows: in Sec. II we recall t
equations of motion of a thin plasma shell moving in thre
dimensional space under the action of a spatially unifo
scalar pressure and a strong friction force. In Sec. III
write the 3D shell equations in a coordinate free formulat
using the formalism of the external forms of differential g
ometry. This formulation proves to be a natural one for
problem under examination, and allows us to focus on
differences between the 2D and 3D equations, and to in
duce a generalized hodograph transformation in the simp
possible way. The convenience of using the notation of
ternal forms even in the case of the standard hodogr
transformation in 1D gasdynamics is illustrated in Appen
A. Explicit solutions of the 3D shell equations are deriv
and discussed in Sec. IV~also see Appendix B!, and for the
hodograph transformed equations in Sec. V. The 2D cha
ter of the spatial structure of the compression and of
rarefaction singularities in three dimensions is discusse
Sec. VI. Finally the conclusions are given in Sec. VII, t
gether with a discussion of the limitations introduced in t
present analysis, by assuming that the pressure remains
tially uniform.

II. GOVERNING EQUATIONS

In this section we derive evolution equations for the 3
plasma slab configuration, under the effect of a scalar p
sure force balanced by a strong friction force on a neu
inert background. Neglecting the effect of plasma inertia
comparison to the friction force, as done in Ref.@2#, we write
the equations governing the nonlinear evolution of
plasma slab in the thin shell approximation introduced
Refs.@1,3#, as

n ( in)s v5P n ~1!

and

d

dt
~s dS!50, ~2!

wherev is the velocity of the shell,s its mass density for
unit surface,P is the pressure jump through the plasma s
with respect to the normal vectorn, n ( in) is the friction fre-
quency,d/dt is the Lagrangian time derivative, anddS is the
~oriented! surface element on the shell. Equations~1! and~2!
have 1D solutions that describe stationary regimes of mo
of the types

s5const, z2Vt5const, ~3!
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where the motion has been taken alongz, and V
5P/(sn ( in)). These configurations are unstable agains
Rayleigh-Taylor type instability, similar to the interchang
instability of a fluid plasma supported against gravity by
magnetic field@8#.

As already mentioned in Ref.@2#, the thin shell approxi-
mation is appropriate in order to analyze the nonlinear
velopment of the Rayleigh-Taylor instability of a plasma sl
in the long wavelength approximation, where the pertur
tion wavelength is much larger than the slab widthL. This
approach was developed in Ref.@1# in the case of a plasma
where inertia, and not friction, balances the externally
plied pressure. A discussion of the validity of this appro
mation during the nonlinear evolution of the instability,
the case of compression and rarefaction singularities in
dimensions, can be found in Ref.@2#.

We consider a 3D case where the shell position depe
on all three spatial coordinatesx,y, andz and on timet. We
assume that the shell is initially located on a smooth surf
that we parametrize asz5Z(x,y). We simplify the problem
of the shell evolution by assuming that the pressure jumpP
alongn remains spatially uniform along the shell, so thatP
5P(t). The more general case whereP depends on the co
ordinates on the shell surface is briefly discussed in Eq.~23!,
and in the conclusions.

In order to obtain equations for the shell evolution, w
introduce the Lagrange variablesa and b, related to the
Euler coordinates by

x5x~a,b,t !, y5y~a,b,t !, and z5z~a,b,t !,
~4!

wherea andb are a set of variables marking the shell e
ments. Convenient choices ofa andb are given, e.g., by a
set of~local! orthogonal coordinates on the surface where
shell is located att50. In the simple case where the shell
initially planar we can chooseZ[0 andx5a and y5b at
t50.

We consider a small plaquette on the shell, cente
around the point with Lagrangian coordinatesa andb, and
with areadS0. At time t the center of the plaquette is locate
at x,y, andz, with areadS. In Lagrange variables, from Eq
~2! for the surface mass densitys we obtain

s0dS05sdS, ~5!

wheres0 is the initial surface density of the shell express
in terms of the Lagrangian coordinateda andb, with

dS05uda3dbu and dS5udx3dy, dy3dz, dz3dxu,
~6!

the initial area of the plaquette and its area at timet. From
Eq. ~5! we obtain
5-2
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s5s0

dS0

dS

5s0F S ]x

]a

]y

]b
2

]y

]a

]x

]b D 2

1S ]y

]a

]z

]b
2

]z

]a

]y

]b D 2

1S ]z

]a

]x

]b
2

]x

]a

]z

]b D 2G21/2

. ~7!

Then, from Eq.~1!, using Eq.~7! with dS5dSn, we obtain
the equations of motion

]x

]t
5$y,z%a,b ,

]y

]t
5$z,x%a,b ,

]z

]t
5$x,y%a,b , ~8!

where the Poisson brackets with respect to the Lagra
variablesa andb are defined by

$ , %a,b[
]

]a

]

]b
2

]

]b

]

]a
, ~9!

and the normalized time variable has been defined as

t5E t P~ t !

s0n ( in)
dt. ~10!

In deriving Eq. ~8! we have assumed that the Lagrangi
variablesa andb have been chosen in such a way thats0 is
spatially constant~say s0[1). This is analogous to the
choice of the mass variablem introduced in Ref.@2#. This
freedom in the definition ofa andb allows us to include in
this treatment shells with a nonuniform initial density dist
bution. Similarly structured equations, though involving se
ond derivatives with respect tot instead of first derivatives
were obtained in the case of a shell pushed by a scalar p
sure in Ref.@3#, and analyzed in Ref.@4# in the case of the
Rayleigh-Taylor instability of a fully ionized thin plasm
shell where the pressure is balanced by the plasma iner

If x and z are independent ofb, we obtainy[b ~i.e.,
]y/]b[1), and we recover the linear 2D equations deriv
in Ref. @2#,

]x

]t
52

]z

]a
and

]z

]t
5

]x

]a
, ~11!

which are simply the Cauchy-Riemann conditions for t
real and imaginary parts of an analytical functionW(z) of a
complex variable:

z5a1 i t. ~12!

The real part ofW(z) is equal to thex coordinate of the foil,
while the z coordinate is the imaginary part. Thus we c
write

x1 iz5W~z!. ~13!

The complex functionW gives a conformal mapping from
the complex planea1 i t to the planex1 iz, andx andz are
harmonic functions ofa andt, i.e.,
01641
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]2x

]a2
1

]2x

]t2
5

]2z

]a2
1

]2z

]t2
50. ~14!

If, instead,b is not an ignorable coordinate, andx and z
depend onb, the equations of motion of the thin shell rema
nonlinear, with a ‘‘vector type’’ nonlinearity given by the
expressions inside the Poisson brackets.

Equations~8! satisfy the constraint

H ]x

]t
,xJ

a,b

1H ]y

]t
,yJ

a,b

1H ]z

]t
,zJ

a,b

50, ~15!

which follows from the Jacobi identity obeyed by the Po
son Brackets. In the 2D limit each term of this expression
identically zero. In Eulerian coordinates, in terms of the v
locity v[]r /]t, constraint~15! takes the form

v•“3v50, ~16!

i.e., the helicity of the shell velocity field is zero, andv
admits orthogonal surfaces, as implicit in our shell proble

III. 3D EQUATIONS IN COORDINATE-FREE FORM

In order to study the properties of Eqs.~8!, and to devise
methods for solving them, it is convenient to rewrite Eqs.~8!
in the coordinate free notation of differential geometry@9#.
This formulation will allow us to compare the 2D and 3
cases more simply, and to obtain an extension of
hodograph transformation@10#. The use of the hodograp
transformation, where dependent and independent varia
are interchanged, is well known in the simpler case of t
independent variables and two dependent variables, e.g
1D gasdynamics, in which case it leads to linear equati
for the fluid space coordinate and for time as functions of
fluid velocity and density, as briefly recalled in Appendix A

The hodograph transformation was used in Ref.@2# to
show that the 2D equations~11! can be rewritten in terms o
the inverse conformal mappingW21 from the complexx
1 iz plane to thea1 i t plane and that, with this change o
dependent and independent variables,a andt are harmonic
functions ofx andz, i.e.,

]2a

]x2
1

]2a

]z2
5

]2t

]x2
1

]2t

]z2
50. ~17!

In three dimensions the hodograph transformed equat
can be obtained by expressinga, b, andt as functions of
x,y, andz. This transformation will allow us to show that th
main property of the evolution equations, that is preserved
the generalization from two to three dimensions, is

¹2t50, ~18!

where the Laplace operator is taken with respect tox andz in
two dimensions andx,y, andz in three dimensions.

To prove these results, first we show that Eqs.~8! can be
written in the notation of differential forms as the equality
5-3
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three 3 forms involving exterior products of the 1 form
obtained by differentiating the independent and the dep
dent variables,

dx`da`db5dt`dy`dz,

dy`da`db5dt`dz̀ dx, ~19!

dz̀ da`db5dt`dx`dy,

where nowd denotes the exterior derivative, and̀ the ex-
terior product~for a detailed definition of these operation
see, e.g., Ref.@9#!.

In order to recover Eqs.~8! we express the 1 formdx in
terms of the three 1 formsda, db, anddt, as

dx5
]x

]a
da1

]x

]b
db1

]x

]t
dt, ~20!

and, analogously fordy anddz, we insert these expression
into Eqs. ~19! and use the antisymmetric properties of t
exterior product.

Note that Eq.~7! becomes simpler in the differential form
notation, and can be rewritten as

s0uda`dbu

5sudx`dy1dy`dz1dz̀ dxu

5suda`dbuA~$x,y%a,b
2 1$y,z%a,b

2 1$z,x%a,b
2 !,

~21!

i.e.,

s5s0S U]x

]tU
2

1U]y

]tU
2

1U]z

]tU
2D 21/2

, ~22!

which can be simply interpreted in terms of the continu
equation.

We note that, in the case of a pressure jump that evo
in time, becoming spatially nonuniform, Eqs.~19! take the
more general form
f
s

01641
n-

es

dx`da`db5F~a,b,t !dt`dy`dz, ~23!

and similarly for the remaining two equations. He
F(a,b,t)[P(a,b,t)/s0, and the time evolution of
P(a,b,t) must be determined from the dynamics of the te
exerting the pressure force on the shell.

If we interchange dependent and independent variab
and write

da5
]a

]x
dx1

]a

]y
dy1

]a

]z
dz, ~24!

and, analogously fordb anddt, insert these expressions int
Eqs. ~19! and again use the antisymmetric properties of
exterior product, we obtain the hodograph transformed eq
tions

]t

]x
5

]a

]y

]b

]z
2

]b

]y

]a

]z
,

~25!
]t

]y
5

]a

]z

]b

]x
2

]b

]z

]a

]x
,

]t

]z
5

]a

]x

]b

]y
2

]b

]x

]a

]y
.

These can be combined in the vector equation

“t5“a3“b, ~26!

where“t denotes the gradient of the functiont5t(x,y,z)
in x,y,z space, etc. From Eq.~26! we obtain Eq.~18! by
applying the divergence operator“, and by noting that the
right hand side of Eq.~26! can be written as“3(a“b).
From Eq.~26!, we also obtain

“t•“a5“t•“b50 ~27!

and thet-independent compatibility equation

“3~“a3“b!50. ~28!

Note that, in contrast to the 2D case, where all variables p
the same role, in general“2aÞ0 and“2bÞ0. In terms of
the hodograph transformed equations Eq.~7! takes the form
s0A~$a,b%x,y
2 1$a,b%y,z

2 1$a,b%z,x
2 !udx`dy1dy`dz1dz̀ dxu5sudx`dy1dy`dz1dz̀ dxu, ~29!
ing
which gives

s5s0u“tu. ~30!

Hodograph transformation in two and three dimensions

In the two-dimensional case,db[dy, and the system o
equations~19! reduces to the equality between two 2 form

dx`da5dz̀ dt, dz̀ da5dt`dx, ~31!

while Eqs.~11! are reobtained by inserting
,

dx5
]x

]a
da1

]x

]t
dt, ~32!

and the analogous expression fordz, into Eqs. ~31!. The
hodograph transformed equations are obtained by insert

da5
]a

]x
dx1

]a

]z
dz, ~33!

and the analogous expression fordt, into Eqs.~31!, and read
5-4
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]t

]x
52

]a

]z
,

]t

]z
5

]a

]x
. ~34!

Note that in two dimensions Eqs.~11! and their hodograph
transformed form@Eq. ~34!# have the same mathematic
structure. In particular they correspond to Cauchy-Riem
conditions for the real and imaginary parts of an analyti
functionW and of its inverseW21, respectively. Conversely
in three dimensions Eqs.~8! and ~26! are mathematically
different: Eqs.~8! are algebraic in nature, and are express
in terms of Poisson brackets, while Eqs.~26! are best inter-
preted geometrically in terms of two pairs of orthogonal s
faces @a5a(x,y,z), t5t(x,y,z)# and @b5b(x,y,z), t
5t(x,y,z)#, such that the vector product of the gradients
a andb is equal to the gradient oft.

IV. SOLUTIONS OF THE 3D THIN SHELL EQUATIONS

A. Stationary solutions and linearized equations

The steady, rigid motion of the thin shell is recover
from Eqs.~8! by takingx5a, y5b, andz5t. This solution
is unstable against infinitesimal perturbations, as can
shown by linearizing Eqs.~8!. This leads to the following
system of equations for the displacement vectorj:

]jx

]t
52

]jz

]a
,

]jy

]t
52

]jz

]b
,

]jz

]t
5

]jx

]a
1

]jy

]b
, ~35!

which give

“

2jz50 and “

2~]jx /]t!5“

2~]jy /]t!50, ~36!

where the Laplace operator is taken with respect to the v
ables a, b, and t. Equations~36! correspond to a linea
dispersion equation of the formg25kx

21ky
2 , whereg is the

~normalized! mode growth rate andkx,y are the mode~nor-
malized! wave numbers in the shell plane. Note that t
structural difference between the 2D and 3D equations is
seen at this linear level.

In the fully nonlinear case explicit solutions of Eqs.~8!
are not easy to find. On the contrary, explicit nonlinear so
tions of the hodograph transformed equations will be giv
in Sec. V.

Below we will consider the special case of Eqs.~8! cor-
responding to rotational invariance around thez axis which
leads to rotationally invariant solutions. In Appendix B it
shown that Eqs.~8! admit self-similar solutions where th
shell velocity components are linear, time dependent fu
tions of x,y,z ~see, e.g., Refs.@11,12# and references quote
therein!.

B. Rotationally invariant solutions

If we assume that the shell evolution is rotationally inva
ant around thez axis, we can set

x5aF~u,t!, y5bF~u,t!, and z5G~u,t!,
~37!

where 2u[a21b2. Inserting Eqs.~37! into Eqs. ~8!, we
obtain
01641
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]G

]u
52

] ln~F !

]t
and

]G

]t
5

]~u F2!

]u
, ~38!

which give the nonlinear elliptic equation

]2 ln~F !

]t2
1

]2~u F2!

]u2
50. ~39!

Equations~38! admit factorized solutions of the forms

F~u,t!5
~C2u/2!1/2

t02t
and G~u,t!5

C2u

t02t
, ~40!

wheret0 and C are integration constants. This solution d
scribes the ‘‘finite time’’ explosion of a thin spherical she
with radius given by

x21y21z2[R25
C2

~t02t!2
. ~41!

The variablesa andb are related to the coordinates on th
spherical shell att50 as

a5@2t0~R2z!#1/2cosf, b5@2t0~R2z!#1/2sinf,

~42!

wheref is the polar angle in thex-y plane ands05C. The
inverse dependence of the radiusR of the sphere with ‘‘time’’
t can be easily understood in terms of the equationṘ}R2,
which expresses the fact that the total ‘‘force’’ is proportion
to the sphere surface. Note that if we expresst as the func-
tion of t, using Eq.~10!, and adopt an equation of the typ
PVg, whereV is the volume inside the hemispherical volum
constant andg is a polytropic index, we findR}t1/(3g21).
Thus, in real time, the shell explosion occurs only fort
→` with a slow algebraic growth.

A different solution which does not exhibit a finite tim
singularity ~in the t time variable! is given by

F~t!5Fo exp~t/t0!,

G~u,t!52u/t01~Fo
2t0/2!exp~2t/t0!/2, ~43!

whereFo andt0 are integration constants. This solution d
scribes the evolution of the paraboloidal shell,

z2zo~t!52~x21y2!/„4zo~t!…, ~44!

with zo(t)5(Fo
2t0/2)exp(2t/t0). The variablesa andb are

related to the coordinates on the paraboloidal shell att50 as
in Eq. ~42!, with zo(t50) substituted forR(t50). The ex-
ponential dependence of the vertex of the paraboloid
‘‘time’’ t can be understood in terms of the equationż}(x2

1y2)}z, which expresses the fact that the force is prop
tional to the area of the surface around the vertex which,
paraboloid, scales linearly with the vertex positionz. For
t0,0, Eq.~43! describes the case where the pressure fo
5-5
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izes all the matter in the foil on the negativez-axis att5`.
At t→2` the shell is flat and has a uniform, vanishing
small, density.

V. SOLUTIONS OF THE 3D HODOGRAPH EQUATIONS

The geometrical interpretation of the hodograph tra
formed equations for the 3D thin shell,“t5“a3“b, in
terms of orthogonal surfaces (“a•“t5“b•“t50) makes
it easier to find families of explicit solutions.

In addition, once a solution is found, we can generate n
solutions by exploiting the invariance of the hodogra
transformed equations~26! under the transformations of th
independent variables

a→a1H~b!, b→b, ~45!

a→L~a!, b→ b

~dL~a!/da!
, ~46!

whereH andL are arbitrary functions. An analogous invar
ance holds when the above transformations are applied tb.

Exponential-type solutions are obtained by taking

a5A2 sin~x!exp~z/A2!,

b5A2 sin~y!exp~z/A2!, ~47!

t5A2 cos~x!cos~y!exp~zA2!,

which can be easily inverted, and give

z5
1

A2
lnS a21b26A~a22b2!218t2

4 D ,

~x,y!5arcsinF ~a,b!

@~a21b2!/26A~a22b2!2/412t2#1/2G ,

~48!

where we will consider only the plus sign in front of th
square root which is defined to be positive. Physically,
t,0, this solution can be taken to represent the evolution
a small square shell that is pushed alongz, and that breaks a
a5b50 at t50, having reachedz52` as shown in Fig.
1. For notational convenience here and below the time v
able t is chosen such thatt50 corresponds to the tim
where the singularity occurs while the initial conditions a
given att5t0Þ0. The logarithmic dependence of the vert
of the shell on timet arounda5b50 can be understood in
terms of the equationż}(x21y2)}1/t}exp(2zA2), which
expresses the fact that the force is proportional to the are
the surface around the vertex which, in this solution,
creases exponentially with the vertex positionz for z,0.

Polynomial solutions are obtained by taking

a5Pa
n~x,y,z!, b5Pb

m~x,y,z!, t5Pt
p~x,y,z!,

~49!
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wherep, m, andn, with p5m1n21, are the orders of the
polynomials, and the coefficients of the polynomialsP are
restricted by the constraints imposed by Eqs.~26!. A simple
class of such solutions corresponds tom5n52 andp53.
Using standard index notation and summation over repe
indices, we write

2a5Ai j xixj , 2b5Bi j xixj and 6t5Ti jkxixjxk ,
~50!

where the indices vary from 1 to 3, withx15x, x25y and
x35z. From Eqs.~26!, we obtain the condition

BkkAi j 2AkkBi j 1AikBk j2BikAk j50, ~51!

i.e., the commutation condition@Â,B̂#5(tr Â)B̂2(tr B̂)Â,
where trÂ denotes the trace of the matrixÂ, and

Ti jk5e i lmAl j Bmk , ~52!

where the right hand side must be symmetrized with resp
to the the indicesi , j , and k, and e i lm is the completely
antisymmetric Ricci tensor. An interesting solution is giv
by

a5~x22z2!/2, b5~y22z2!/2, t5xyz, ~53!

which describes a shell that for negativet has the shape of a
symmetric~equilateral! hyperbolic surface in one octant. Th
density in the shell is proportional to (x2y21y2z21z2x2)1/2.
At t50 the position of the shell coincides with it
asymptotic quarter-planes and then, after breaking at the
gin, opens into three hyperbolic ‘‘petals’’ in the adjace
octants, as shown in Fig. 2. This solution generalizes~in a
special symmetric, nongeneric way as will be discussed
Sec. VI B! the 2D finite time rarefaction singularity given b
Eq. ~56! of Ref. @2#.
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FIG. 1. Time evolution of a small square shell blown along t
negativez according to Eq.~48!. The position of the shell is shown
at two different times.
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The well known systems of orthogonal coordinates, t
are commonly used in mathematical physics, can be rew
ten is such a way as to lead to solutions of Eqs.~26!. A
spherical solution is obtained by setting

t51/r 51/~x21y21z2!1/2, a5cosu5
z

~x21y21z2!1/2
,

b5w5arctan~y/x!, ~54!

where r ,u, and w are the usual spherical coordinates. Th
solution can be easily verified, since

“t52~1/r 2!er , “a52~sinu/r !eu ,

“b51/~r sinu!ef , ~55!

with e the unit vectors along the spherical coordinates. Eq
tion ~54! can be inverted, and gives

x5
sin~arccosa!cosb

t
, y5

sin~arccosa!sinb

t
, z5

a

t
.

~56!

It describes an expandingr→` for t50 ~and a collapsing
r 50 for t5`) sphere, and essentially coincides with so
tion ~41! found in Sec. IV B. Azimuthally modulated solu
tions with the same time behavior can be constructed
applying tob in Eqs. ~54! the transformation given by Eq
~46!.

The spherical solution@Eq. ~54!# can now be used as
starting point for constructing an infinite linear space of a
muthally symmetric solutions that exploit the well know
properties of the solutions of the Laplace operator. First

-4
-3

-2
-1

0
1

-4

-3

-2

-1
0

1

-1

0

1

2

3

4

-4
-3

-2
-1

0

4

-3

-2

-1
0

FIG. 2. Time evolution of an equilateral hyperbolic shell mo
ing in the upper left forward octant toward the origin according
Eq. ~53!, and subsequently splitting into three disconnected ‘‘p
als’’ in the adjacent octants. The position of the shell is shown
two different times, before and after breaking.
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note that the functiont in Eqs. ~54! satisfies, in agreemen
with Eq. ~18!, the Laplace equation“2t50. Then we recall
that if S is a constant vector, then (S•“)t is also a solution
of the Laplace operator. Moreover, ifS is alongz, (S•“)b
50, with b given by Eq.~54!, and new ‘‘multipolar’’ solu-
tions of Eqs.~26! can be constructed by applying the tran
formations

t→ ]mt

]zm
, a→]ma

]zm
, b→b. ~57!

These solutions can be linearly combined ina,b,t space.
When transformed back tox,y.z space, they correspond t
nonlinear combinations.

Prolate and oblate ellipsoids can be obtained by apply
the operator

11e
]2

]z2
~58!

to Eq. ~54!, with e either positive~prolate! or negative~ob-
late ellipsoids!. We obtain

t5
~x21y21z2!22e~x21y222z2!

~x21y21z2!5/2
,

~59!

a5z
~x21y21z2!223e~x21y2!

~x21y21z2!5/2
, b5arctan~y/x!.

For small values oft the ellipsoids become quasispherica
For small negative values ofe we obtain an oblate ellipsoid
that expands (t→0)/collapses (t→`) alongz faster than in
the equatorial plane. The collapsing solution develops t
symmetric, hyperbolic, finite time singularities along thez
axis. As shown in Fig. 3~a!, these singularities arise when th
collapsing oblate ellipsoid touches an expanding, two-lob
‘‘internal’’ surface which, for smallt, is approximately given
by (x21y21z2)25e(x21y222z2). For small positive val-
ues of e we obtain an expanding (t→0)/collapsing (t
→`) prolate ellipsoid. As shown in Fig. 3~b!, the collapsing
solution breaks at a finite time in the equatorial plane dev
oping a ring-shaped hyperbolic singularity when it touch
the expanding, doughnut-shaped ‘‘internal’’ surface.

The procedure of differentiating Eqs.~54! alongz can also
be reversed. The first integration with respect toz gives a
new solution corresponding to the well known parabolic c
ordinates@13#

t5 ln~r 1z!, a5r 2z, b5arctan~y/x!, ~60!

which can inverted fora>0, and gives

x5Aa exp~t/2!cosb, y5Aa exp~t/2!sinb,
~61!

z5@exp~t!2a#/2.

-
t

5-7
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At the initial time t50 this solution corresponds to a p
raboloid along the negativez axis, and with vertices atx
50, y50, andz51/2 which expand exponentially in tim
toward largez and larger. This solution is essentially equiva
lent to the one given by Eq.~43!.

Finally we remark that the above solutions are not gen
insofar as they are based on some symmetry property. M
general solutions are difficult to find: for example, the ev
lution of a triaxial ellipsoid requires extensive algebraic m
nipulations based on the so called ‘‘ellipsoidal coordinate
used, e.g., in the study of elliptical galaxies~see, e.g., Ref.
@14# Part II!.

0 0.2 0.4 0.6 0.8 1

R

0

0.2

0.4

0.6

0.8

1
z

(a)

0 0.2 0.4 0.6 0.8 1

R

-0.4

-0.2

0

0.2

0.4

z

(b)

FIG. 3. Time evolution of the poloidal cross section of an obl
~a! and of a prolate~b! ellipsoid expanding (t→0)/collapsing (t
→`) according to Eq.~59!, with e570.03. The level curves cor
respond to the position of the poloidal cross section of the ellipso
before and after their breaking, which occurs when the ellipso
touch the ‘‘inner surface’’ expanding along thez axis ~a!, or equa-
torially ~b!.
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VI. SPATIAL STRUCTURE OF FINITE TIME
SINGULARITIES

The special solutions of Eqs.~8! and/or of Eqs.~26! that
have been obtained in the previous sections display sin
larities either at finite time or forutu→`. Two types of sin-
gularities appear in these solutions: compression singular
and rarefaction singularities. The first ones occur when
shell density becomes infinite and, according to Eq.~22!,
correspond to stagnation points where the velocity goes
zero. These singularities are best described in the frame w
of Eqs. ~8!. The second type of singularities correspond
rarefaction singularities where the density vanishes and,
cording to Eq.~22!, “t50, i.e., the velocity diverges. Thes
singularities are best described in the frame work of E
~26!. As discussed in Ref.@2# the long wavelength approxi
mation remains valid in the second case, where its accu
actually improves close to the singularity, while in the fir
case it loses its validity in the final stage of the developm
of the singularity and must therefore be interpreted as
scribing an intermediate asymptotic regime.

A. Finite time compression singularities

Compression singularities occur at the stagnation po
where the shell velocity goes to zero. Then Eqs.~8! imply
that, at the singularity, the Poisson brackets betweenx,y, and
z vanish, i.e., that locallyx, y, and z are not independen
functions ofa andb. We assume that the compression s
gularity occurs atx50, y50, andz50, corresponding, with
a proper redefinition of the origin of the coordinates, tot
50, a50, and b50. Then, with a proper choice of th
independent variablesa andb, the functionsx,y, andz can
be expanded near the compression singularity in the form

xi'Lia1Qi~a,b,t!, ~62!

where xi5x,y,z with i 5(1,2,3), Li are numerical coeffi-
cients~not all identically zero in the generic case! andQi are
three quadratic forms ofa,b, andt. The fact that the linear
terms are all proportional to the same Lagrangian varia
~chosen to bea) and do not depend ont express the fact
that, nearx50, y50, andz50, x,y, andz are not indepen-
dent functions and that the shell velocity vanishes. As in
2D case discussed in Ref.@2#, cubic terms, not explicitly
included in Eq.~62! will turn out to be important in the
description of a compressional singularity and will be add
later.

With a rotation inx,y,z space and a rescaling, we ca
makeL j50 for j Þ1 andL151, i.e.,x5a to leading order.
Then, inserting Eq.~62! into Eqs.~8!, we obtain the follow-
ing relationships between the coefficients of the quadr
forms Qi :

Q 1
t,t5Q 1

a,t5Q 1
b,t50, ~63!

and, takingl5(a,b),

s
s

5-8
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Q 2
t,t52Q 3

b,t , Q 2
l,t52Q 3

l,b ,
~64!

Q 3
t,t5Q 2

b,t ,Q 3
l,t5Q 2

l,b ,

where the upper indices onQi refer to the corresponding
~symmetric! coefficients of the quadratic form. Equation~63!
shows that, to first order, the shell dynamics close to
singularity has a 2D behavior and that, with the coordin
choice made above, occurs in they-z plane. In this local
expansion, the coefficientsQ 1

a,a ,Q 1
a,b ,Q 1

b,b ,Q 2
a,a , and

Q 3
a,a remain undetermined. With a further rotation aroundx

in the y-z plane we can makeQ 2
b,t50. Then Eqs.~64! lead

to

Q 3
b,b5Q 3

t,t50, Q 3
b,t5Q 2

b,b52Q 2
t,t ,

~65!
Q 2

a,t52Q 3
a,b , Q 3

a,t5Q 2
a,b .

These relationships show that, ata50, y and z are ~qua-
dratic! conjugate harmonic functions ofb andt. This result
can also be understood by reversing the reasoning leadin
Eq. ~11!. For aÞ0, the dependence ofy and z on b and t
remains harmonic, but acquires ana-dependent linear term
This harmonic behavior can be expressed in the form

y1 iz'Az21 i2Baz, i.e.,
~66!

y1 iz'A~z1 iBa/A!2[A~z8!2

where z5b1 i t and z5b81 i t85z1 iBa/A, with b85b
andt85t for a50 andA[Q 2

b,b ; B is a complex number
given by 2B5Q 2

a,b2 iQ 2
a,t ; and terms proportional toa2

are supposed to be included in the as yet undetermined
efficientsQ 2

a,a andQ 3
a,a .

Equation~66! agrees with the 2D result obtained in Re
@2#. We recall that in the 2D case the behavior around a fin
time compression singularity was analyzed by expanding
function W(z) @see Eq.~13! of the present paper# as

W~z!5C2z21C2z31•••, ~67!

whereC2 andC3 are complex numbers. It was shown th
in agreement with the standard treatment in the theory
singularities@15#, the essential property of the local represe
tation of the mapping from the Lagrange variables to
Euler variables given by Eq.~67! is the cubic dependence o
the space Lagrangian coordinate. This dependence d
mines the 2D cusplike structure of the shell at the singula
@see Eq.~48! of Ref. @2##.

In the present 3-D treatment, the cubic terms in the
pression ofy and z cannot be expressed in general as h
monic functions ofb andt. Nevertheless, at a critical tim
t850, retaining linear terms ina, we can include the cubic
terms in the forms

y5A8~b8!21C8~b8!3 and z5Da~b8!21E8~b8!3,

~68!

whereA8, C8, andE8 are real inhomogeneous linear fun
tions of a that, for a50, are equal toA, C, andE, respec-
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tively, A is given in Eq.~66! andC,D, andE are real num-
bers. In the generic caseE8Þ0 while C8 and D can be set
equal to zero without loss of generality, as this amounts
employing the variables (y2C8z/E8,z2Day/A) instead of
(y,z). Then, att850, and for small values ofa, i.e., for
small x, the shell has a cusplike shape in they-z plane, with
sides given by

z56E8U y

A8
U3/2

. ~69!

B. Finite time rarefaction singularities

Let us now consider the hodograph transformed equat
“t5“a3“b in the neighborhood of a rarefaction sing
larity ~for the sake of simplicity, we assume that it is locat
at t50, a50, andb50, corresponding, with a proper re
definition of the coordinates, tox50, y50, andz50). At
this point the shell surface density goes to zero, a
“tu(x50,y50,z50)50. Thus, at this singular point, we have

“au(x50,y50,z50)}“bu(x50,y50,z50) , ~70!

i.e., the surfacesa(x,y,z) and b(x,y,z) are tangent at (x
50, y50, z50).

Let us now specify an independent coordinate syst
such that, with the standard index notation,x[x1 lies along
the common gradient direction; we expanda andb around
the singularities

a5ax11Ai , j xixj /2, b5bx11Bi , j xixj /2. ~71!

With a suitable rotation in thea-b plane, and a rescaling, w
can set a51 and b50. Keeping only linear terms
in the product of the gradients, which corresponds
expandingt up to quadratic terms, the compatibility cond
tion “3(“a3“b)50 gives

B221B335B125B1350. ~72!

Using these conditions and integrating“t, we obtain

t5~B222B33!x2x3/22B23~x2x22x3x3!/2, ~73!

i.e., t is locally independent ofx1 and is harmonic in the
perpendicularx2 ,x3 plane. With a rotation in thex2-x3
plane, we can put thex2x3 term in the expression oft equal
to zero. Then we can reinterpret the above results in
forms

b5Cyz, t52C~y22z2!, ~74!

a5x1Ai , j xixj /2, ~75!

whereC5B23, andb as a function ofy and z, is the har-
monic conjugate oft.

We see also rarefaction singularities in three dimensi
have a generic 2D character, and, as found in two dim
sions,@see Eq.~56! of Ref. @2##, are described by two qua
dratic harmonic conjugate functions. Note that the case w
both“a and“b vanish at the singularity is nongeneric, an
5-9
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is described by polynomial solutions of the typest5xyz,
a5(x22y2)/2, andb5(y22z2)/2 ~see Sec. V!. This latter
solution has a 3D character, but is not structurally stable
its 3D structure is destroyed by making either“a or “b
arbitrarily small but not zero at the singularity.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper we have investigated the problem of
formation of singularities in a thin shell in connection wi
the nonlinear development of the Rayleigh-Taylor instabi
of a plasma slab moving under the effect of a pressure t
in the presence of a strong friction force. This work exten
the two-dimensional analysis performed in Ref.@2#.

In order to gain insight into the 3D nonlinear instabilit
we have used two main approximations. First, as in Ref.@2#,
we have restricted our analysis to the long wavelength li
where the plasma slab is modeled as a thin shell. Second
have assumed that the pressure on the shell remains spa
homogeneous. We have shown that the different scaling w
size from two to three dimensions causes the shell evolu
equations to be structurally different from their 2D limit. I
particular, they remain nonlinear when expressed in
grangian variables, contrary to the 2D case.

The resulting 3D equation has been shown to have in
esting mathematical properties that make it possible to
hibit some of the nonlinear 3D behavior of the shell analy
cally, which is remarkable in view of the complexity of th
problem. The formalism of the differential geometry is na
ral for this problem, and makes it possible to construc
generalization of the hodograph transformation.

We have shown that the 3D shell equations exhibit b
compression and rarefaction singularities. A local analy
around the singular points has indicated that both finite t
compression and rarefaction singularities in three dimens
have quasi-2D behaviors. The singularity develops alon
curve on the shell and the dynamics of the shell, projecte
the plane perpendicular to this curve at the singularity
essentially the same as in two dimensions. Indeed, the c
dinate along the curve plays the role of the ignorable co
dinate of the 2D configuration. In particular, compress
singularities develop a cusp structure that extends along
curve. Rarefaction singularities open along hyperbolae in
plane perpendicular to the curve. Genuine 3D singulari
are possible, but have been shown to be structurally unsta

The limitations of the validity of the long wavelength a
proximation were already discussed in Ref.@2#, and remain
essentially the same in three dimensions, that is, this appr
mation is better and better verified in the case of rarefac
singularities, while it must be interpreted as describing
intermediate asymptotics in the case of compression sin
larities.

The assumption of a spatially homogeneous pressure
is obviously more critical. If an inhomogeneity of the pre
sure term develops in time, additional nonlinearities
present and the shell evolution is altered, as indicated e.g
Eq. ~23!. Nevertheless a regular, nonvanishing, inhomo
neous pressure term does not modify the 2D character o
singularities, which is a consequence of the vector non
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earities of the shell equations. This can be seen by refer
for example to the hodograph transformed equations. In
presence of an inhomogeneous pressure term, Eqs.~26! be-
come

F~a,b,t !“t5“a3“b, ~76!

whereF(a,b,t) is defined below Eq.~23!. At the rarefaction
singularities, where“t50, the two vectors“a and“b be-
come tangent as in the uniform pressure case.
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APPENDIX A: 1D GASDYNAMICS IN COORDINATE
FREE FORM AND THE HODOGRAPH

TRANSFORMATION

For a 1D fluid configuration, where quantities depend ox
and t only, the continuity equation

]r

]t
1

]ru

]x
50 ~A1!

and the Euler equation

rS ]u

]t
1u

]u

]xD1
]p

]x
50, ~A2!

with densityr, pressurep5p(r), and enthalpyh5h(r), can
be written in the notation of differential forms as

dr`dx5d~ru!`dt, ~A3!

du`dx5d~h1u2/2!`dt. ~A4!

Equations~A1! and ~A2! follow by taking x and t as inde-
pendent variables, and by expressing the dependent varia
r andu as functions ofx and t. Taking, instead,r andu as
independent variables, and expressingx andt as functions of
r andu, we obtain the hodograph transformed equations

]x

]u
2u

]t

]u
1r

]t

]r
50, ~A5!

]x

]r
1

dh

dr

]t

]u
2u

]t

]r
50, ~A6!

which are linear in the dependent variablesx and t.

APPENDIX B: SELF-SIMILAR SOLUTIONS
WITH VELOCITY COMPONENTS LINEAR

IN EULER COORDINATES

Self-similar solutions of the 3D equations~8! are obtained
by setting

xi5Xa,b
i ~t!x0

ax0
b , ~B1!
5-10
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where xi5x,y,z for i 51,2,3 respectively,x0
a are the La-

grangian variablesa and b for a,b51,2, respectively, and
Xa,b

i (t) are three linearly independent 232 symmetric real
matrices that are functions of time and whose coefficie
satisfy the system of nine coupled ordinary differential eq
tions

Ẋa,b
i 52e i jk~Xa,1

j X2,b
k 1Xb,1

j X2,a
k !, ~B2!

where the dot denotes a derivative with respect tot, ande i jk

is a completely antisymmetric Ricci tensor. Expressing
symmetric matrix product on its right-hand side as a ti
dependent combination of the three linearly independ
symmetric matricesXa,b

i , we see that Eq.~B1! corresponds
to solutions where the velocity components are linear, ti
dependent functions of the Eulerian coordinatesx,y, andz.
In these solutions the variablesa and b are simply labels,
and cannot be interpreted as initial coordinates, and the s
surface density tends to infinity forx5y5z50 as 1/R.

Takinga5b51 in Eq.~B2! and thena5b52, we obtain

Ẋ1,1
i 54e i jkX1,1

j X2,1
k and Ẋ2,2

i 54e i jkX2,1
j X2,2

k , ~B3!

which give

(
i

~X1,1
i !25const and (

i
~X2,2

i !25const. ~B4!

Instead takinga51 andb52, we obtain

Ẋ1,2
i 52e i jkX1,1

j X2,2
k , ~B5!

which, together with Eqs.~B3!, give
on
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(
i

X1,1
i X1,2

i 5const,

(
i

X2,2
i X1,2

i 5const,

~B6!

(
i

@X1,1
i X2,2

i 12~X1,2
i !2#5const,

(
i

~Ẋ1,1
i X2,2

i 2X1.1
i Ẋ2,2

i !50.

In Eulerian coordinates the above equations correspon
the orthogonality condition

v•r50,

i.e., to ~B7!

x21y21z25const.

Thus the shell motion corresponds to a complex rotatio
motion around a time dependent axis. An elementary so
tion is given by the case when all functionsX are zero except
X1,1

1 5sint, X1,1
2 5cost, andX1,2

3 51/4.
More general self-similar solutions can be obtained

adding, to Eq.~B7! a time dependent linear term in th
Lagrange coordinatesa andb and a time dependent consta
term, as done, e.g., in Ref.@11#. The equations that determin
the time behavior of these additional terms depend on
functionsX, while Eqs.~B2! remain unchanged.
i-
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