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Three-dimensional singularities of a thin plasma slab

F. Pegorard,S. V. BulanoV? J. |. Sakaf® and G. Tomassifii
!Physics Department of the University of Pisa and INFM, Pisa 56100, ltaly
2General Physics Institute—RAS, Moscow 119991, Russia
SFaculty of Engineering, Toyama University, Toyama 930, Japan
4Scuola Normale Superiore, Pisa 56100, Italy
(Received 22 December 2000; revised manuscript received 26 March 2001; published 26 June 2001

The three-dimension&BD) nonlinear development of the interchangeliRayleigh-Tayloy instability of a
thin slab of plasma exhibits interesting features with respect to its two-dimeng&iDlimit investigated by
Bulanov, Pegoraro, and SaK&hys. Rev. E59, 2292(1999]. We show that, contrary to the 2D case, the 3D
evolution equations remain nonlinear when Lagrangian variables are adopted. Explicit solutions are found by
the use of a generalized hodograph transformation. Both compression and rarefaction singularities are formed.
Local solutions in the neighborhood of the singular points have a generic 2D character.
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[. INTRODUCTION force is dominant on the inertia terms and the long wave-
length approximation plays an important role, by making the
The formation of finite time singularities, and the charac-mode growth rate increase linearly with the mode wave num-
terization of their spatial structure, represent one of the mosber.
interesting problems in the study of the time evolution of The extension of these results to a fully 3D configuration,
nonlinear systems. The Rayleigh-Taylor instability of a thinwhere the shape of the shell representing the thin plasma slab
plasma slalj1,2] provides one of the best examples of theis not assumed to remain constant along one spdfiailte-
basic nonlinear behavior of a fluid when its equilibrium con-sian direction is nontrivial. First the dynamics of the mag-
figuration is unstable against infinitesimal perturbations. Inmnetic field pushing the plasma slab is essentially different in
addition, in some simplified limits, it is amenable to exacta 3D configuration. Second, the kinematics of the foil re-
mathematical solutions that make it possible to study themains nonlinear, as shown below, even when the conformal
formation and properties of singularities produced in thetransformation method is suitably generalized.
nonlinear evolution of the instability. In R€f2] Sec. Il, the Regarding the first point, in the present paper the exten-
model of a thin slab of weakly ionized plasma moving undersion to the 3D case is obtained by referring to a scalar effec-
the pressure of a magnetic field in a background of neutrdiive pressure pushing the plasma shell. Furthermore, it is
gas, providing a strong friction force, was considered. Theassumed that the pressure at the slab surface is spatially uni-
use of the thin shell approximation, developed in Refsform, although it may vary with time. The three-dimensional
[1,3,4] and[5], and the simplifying assumption that the shell evolution of a plasma shell, pushed by the electromagnetic
configuration remains constant along one spd@artesian  radiation pressure against a background of neutral atoms that
direction[two-dimensional2D) approximatior allowed the  provides the friction force, is an example of such a physical
authors of Ref[2] to give an explicit analytical description system, and is of interest for space plasma conditions such
of the nonlinear aspects of the Rayleigh-Taylor instability inas, e.g., in the case of the interaction of the tail of a comet
a 2D configuration in the long wavelength approximation. Inwith the solar radiation6].
this 2D configuration the magnetic field was taken to be Regarding the second point, in the 2D case the pressure
constant, and to be aligned along the symmetry diregtidh  force acts essentially on a cur{tbe projection of the shell in
was shown that thaonlineardevelopment of the instability the plane perpendicular to the direction of symme#md is
is described by a set of twbnear equations relating the thus a linear function of size. In three dimensions the pres-
position of an element of the shell in thez plane to the sure force acts on a surface, and is thus a quadratic function
time t and to the Lagrangian coordinatemarking the shell of size. Due to this different scaling with size, in three di-
element. The solutions of these equations can be expressetensions the evolution equations for the position in space
in terms of the real and imaginary parts of an analytic func+=(x,y,z) of a shell element do not become linear, in con-
tion of a complex variabl¢7]. This function corresponds to trast to the 2D case, when expressed in terms of tiaral of
a conformal transformation between the,{) and ,z) the Lagrangian coordinates and 8 marking the shell ele-
planes. This analytical function leads to the appearance ahent. Because of this nonlinearity, in three dimensions it is
singularities. It was shown that two types of singularities arenot possible to give a general class of solutions in explicit
possible: compression singularities, where the surface derierm as was done in two dimensions in terms of analytical
sity of the shell tends to infinity; and rarefaction singulari- functions of a complex variable. However, general properties
ties, corresponding to a tearing of the shell at the positiorof the solutions can nevertheless be identified analytically,
where its surface density goes to zero. The occurrence @&nd explicit solutions can be found in terms of a generalized
finite time singularities, as opposed to singularities that dehodograph transformation that interchanges dependent and
velop ast— o, and the ill posedness of the initial conditions independent variables, i.e., by solving fo&, andg as func-
were also discussed. In this analysis the fact that the frictiotions ofx,y, andz
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The main problem we address in this paper in the study ofvhere the motion has been taken alory and V
3D configurations is the formation of singularities. We re-=P/(av(™). These configurations are unstable against a
cover both compression and rarefaction singularities found ilRayleigh-Taylor type instability, similar to the interchange
Ref. [2] and, by a proper expansion of the solutions in theinstability of a fluid plasma supported against gravity by a
neighborhood of the singularities, we show that both commagnetic field 8].
pression and rarefaction singularities have a generic 2D char- As already mentioned in Ref2], the thin shell approxi-
acter: they tend to develop along a curve, and the plasmaation is appropriate in order to analyze the nonlinear de-
dynamics in the plane perpendicular to these curves is theelopment of the Rayleigh-Taylor instability of a plasma slab
same as for a 2D configuration. in the long wavelength approximation, where the perturba-

This paper is organized as follows: in Sec. Il we recall thetion wavelength is much larger than the slab witlthThis
equations of motion of a thin plasma shell moving in three-approach was developed in Rgt] in the case of a plasma
dimensional space under the action of a spatially uniformwhere inertia, and not friction, balances the externally ap-
scalar pressure and a strong friction force. In Sec. Il weplied pressure. A discussion of the validity of this approxi-
write the 3D shell equations in a coordinate free formulationmation during the nonlinear evolution of the instability, in
using the formalism of the external forms of differential ge-the case of compression and rarefaction singularities in two
ometry. This formulation proves to be a natural one for thedimensions, can be found in R¢Z2].
problem under examination, and allows us to focus on the We consider a 3D case where the shell position depends
differences between the 2D and 3D equations, and to introen all three spatial coordinatesy, andz and on timet. We
duce a generalized hodograph transformation in the simplestssume that the shell is initially located on a smooth surface
possible way. The convenience of using the notation of exthat we parametrize as= Z(x,y). We simplify the problem
ternal forms even in the case of the standard hodograpbf the shell evolution by assuming that the pressure janp
transformation in 1D gasdynamics is illustrated in Appendixalongn remains spatially uniform along the shell, so tfat
A. Explicit solutions of the 3D shell equations are derived =7(t). The more general case whefedepends on the co-
and discussed in Sec. l\lso see Appendix Band for the  ordinates on the shell surface is briefly discussed in(£8),
hodograph transformed equations in Sec. V. The 2D charaand in the conclusions.
ter of the spatial structure of the compression and of the In order to obtain equations for the shell evolution, we
rarefaction singularities in three dimensions is discussed iintroduce the Lagrange variables and 8, related to the
Sec. VI. Finally the conclusions are given in Sec. VII, to- Euler coordinates by
gether with a discussion of the limitations introduced in the
present analysis, by assuming that the pressure remains spa-
tially uniform. x=X(a,B,t), y=y(a,Bt), and z=z(e,pB}),

4

Il. GOVERNING EQUATIONS

In this section we derive evolution equations for the 3DWherea and 8 are a set of variables marking the shell ele-
plasma slab configuration, under the effect of a scalar pregnents. Convenient choices efand g are given, e.g., by a
sure force balanced by a strong friction force on a neutra$et of(local) orthogonal coordinates on the surface where the
inert background. Neglecting the effect of plasma inertia inshell is located at=0. In the simple case where the shell is
comparison to the friction force, as done in Réfl, we write  initially planar we can choos€=0 andx=« andy= g at
the equations governing the nonlinear evolution of thet=0.
plasma slab in the thin shell approximation introduced in We consider a small plaquette on the shell, centered

Refs.[1,3], as around the point with Lagrangian coordinatesand 8, and
with areadZ, . At time t the center of the plaquette is located
iNgyv=Pn (1)  atx,y, andz, with aready. In Lagrange variables, from Eq.
(2) for the surface mass density we obtain
and
d ood2o=0cdX, (5)
&(0' d)=0, (2

h is th locity of the shello i density f whereo is the initial surface density of the shell expressed
wherev 1s t eve ocity of the shellg Its mass density for in terms of the Lagrangian coordinatedand 3, with
unit surface,P is the pressure jump through the plasma slab

with respect to the normal vector, »(™ is the friction fre-
quency d/dt is the Lagrangian time derivative, add is the dSo=|daxdp| and d3=|dxxdy, dyxdz, dzxdx|,
(oriented surface element on the shell. Equatighsand(2) ©)
have 1D solutions that describe stationary regimes of motion
of the types
the initial area of the plaquette and its area at timErom
o=const, z—Vt=const, (3 Eq. (5) we obtain
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—o d>g Px X Pz ¢z
Vs PRI R 1
ax gy dy ox\% [ay 9z 9z dy)\? _ . . .
=0y (——y——y—) +(_y____y) If, instead, B is not an ignorable coordinate, andand z
da o da if da df  da If depend orB, the equations of motion of the thin shell remain
~12 nonlinear, with a “vector type” nonlinearity given by the

9z Ix  ox dz\?
da dB  Jda IB

(7) expressions inside the Poisson brackets.
Equations(8) satisfy the constraint

Then, from Eq(1), using Eq.(7) with d%=d3n, we obtain {&x ’ {&y } (a ]
+
B a,B a,B

the equations of motion X % oz _
q (77-’X oY + (77_,2 =0, (15

ax ay z
8—7—{y,z}a,[,, &_r_{z’x}“'ﬁ’ a_r_{x’y}”‘vﬁ’ B \Wwhich follows from the Jacobi identity obeyed by the Pois-
son Brackets. In the 2D limit each term of this expression is
where the Poisson brackets with respect to the Lagrangéentically zero. In Eulerian coordinates, in terms of the ve-

variablesa and 8 are defined by locity v=4r/d, constraint(15) takes the form

_J2 9 99 (9) V-V Xv=0, (16)

. _ . _ i.e., the helicity of the shell velocity field is zero, amd
and the normalized time variable has been defined as admits orthogonal surfaces, as implicit in our shell problem.

= Jt A d (10) Ill. 3D EQUATIONS IN COORDINATE-FREE FORM

(in) =
To¥ In order to study the properties of EdS), and to devise

In deriving Eq.(8) we have assumed that the Lagrangian_methOdS for_solving them, it.is convgnient to rewrite E@s.
variablesa' and 8 have been chosen in such a way thgtis in Fhe coordlr)ate f(ee notation of differential geomeit8y.
spatially constant(say op,=1). This is analogous to the This formulation will allow us to compare the 2D and 3D
choice of the mass variabia introduced in Ref[2]. This ~ ¢&Ses more simply, and to obtain an extension of the

freedom in the definition of and 8 allows us to include in hedograph transformatiofl0]. The use of the hodograph
this treatment shells with a nonuniform initial density distri- ransformation, where dependent and independent variables

bution. Similarly structured equations, though involving sec-2'€ interchanged, is well known in the simpler case of two
ond derivatives with respect toinstead of first derivatives, ndependent variables and two dependent variables, e.g., in

were obtained in the case of a shell pushed by a scalar presP gasdynamics, in which case it leads to linear equations
sure in Ref[3], and analyzed in Ref4] in the case of the for the fluid space coordinate and for time as functions of the

Rayleigh-Taylor instability of a fully ionized thin plasma fluid velocity and density, as briefly recalled in Appendix A.

shell where the pressure is balanced by the plasma inertia. '€ hodograph transformation was used in Réi. to
If x and z are independent oB, we obtainy=3 (i.e show that the 2D equatior{41) can be rewritten in terms of
) - " . . _l
dylap=1), and we recover the linear 2D equations derived"® iNverse conformal mapping/~" from the complexx
in Ref. [2], +iz plane to thea+i7 plane and that, with this change of
dependent and independent variablkesand = are harmonic
X dz 9z 9% 11 functions ofx andz, i.e.,
—=—— and —=—, 11
aT Jda JT Jda
Pa  Pa P c?z'r_

which are simply the Cauchy-Riemann conditions for the a2 Fzﬁ P (17)

real and imaginary parts of an analytical functdf{{) of a

complex variable: In three dimensions the hodograph transformed equations
[=atir (12) can be obtained by expressing 8, and 7 as functions of

X,Y, andz This transformation will allow us to show that the
The real part ofN/(¢) is equal to thex coordinate of the foil, Main property of the evolution equations, that is preserved in
while the z coordinate is the imaginary part. Thus we canthe generalization from two to three dimensions, is

write V2r=0. 18
Xx+iz=W({). (13
where the Laplace operator is taken with respestdadzin
The complex functiorW gives a conformal mapping from two dimensions and,y, andz in three dimensions.
the complex planex+ir to the planex+iz, andx andz are To prove these results, first we show that E@.can be
harmonic functions ofr and 7, i.e., written in the notation of differential forms as the equality of
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three 3 forms involving exterior products of the 1 forms dx\da/\dB=F a,B,t)dt/\dy/\dz, (23
obtained by differentiating the independent and the depen-
dent variables, and similarly for the remaining two equations. Here
He,Bt)=P(a,B,t)0y, and the time evolution of
dx\de/\dB=dr/\dy/\dz, P(a,B,t) must be determined from the dynamics of the term
exerting the pressure force on the shell.
dy/\da/AdB=d7/\dZ/\dx, (19 If we interchange dependent and independent variables,
dzAda/AdB=drAdxAdy, and write
where nowd denotes the exterior derivative, and the ex- da= (9—adx+ a—ady+ —dz (29
terior product(for a detailed definition of these operations, %

see, e.g., Ref.9)).
In order to recover Eq¥8) we express the 1 formdx in
terms of the three 1 formda, dB, anddr, as

and, analogously fal 8 andd , insert these expressions into
Egs.(19) and again use the antisymmetric properties of the
exterior product, we obtain the hodograph transformed equa-

o tions
dx——d +—d +—d 20
“T B A n 0 It _da df 9B da
and, analogously fody anddz, we insert these expressions X 9y 9z dy z 25
into I_Eqs.(19) and use the antisymmetric properties of the o1 dadf  ap da o7 e 0B 9B da
exterior product. - P , —=— =
Note that Eq(7) becomes simpler in the differential form gy 9z ox oz ox' gz axdy X dy’

notation, and can be rewritten as These can be combined in the vector equation

oolda/N\dg|
=o|dx/\dy+dy/\dz+dz\dx|

Vr=VaxV}, (26)

whereV 7 denotes the gradient of the functier 7(X,y,z)
:a|da/\dﬂ|\/({x,y}iyﬁjt{y,z}i'ﬁju{z,x}iyﬁ), in x,y,z space, etc. From E¢26) we obtain Eq.(18) by
applying the divergence operat®t, and by noting that the

(2 right hand side of Eq(26) can be written a¥v X (aV ).
ie., From Eq.(26), we also obtain
ax|2 | ayl? 2\ —12 Vr-Va=V7r.VB=0 (27
o= 0'0( + = +|= ) , (22 _ o .
ar a7 o7 and ther-independent compatibility equation
which can be simply interpreted in terms of the continuity VX(VaxVB)=0. (29

equation.

We note that, in the case of a pressure jump that evolvellote that, in contrast to the 2D case, where all variables play
in time, becoming spatially nonuniform, Eqdl9) take the the same role, in gener®?a+0 andV?B+0. In terms of
more general form the hodograph transformed equations Ef).takes the form

ao({a, BYxy+{a. Bl ,+{a. By 0 |dx\dy+dyAdz+dz/\dx =

(29

which gives X X
dx=—da+ —dr, (32

o=0y| V1. (30 Ja I7

and the analogous expression fibz, into Egs.(31). The

Hodograph transformation in two and three dimensions hodograph transformed equations are obtained by inserting

In the two-dimensional casdB=dy, and the system of

equationg19) reduces to the equality between two 2 forms, da da
da=—dx+ —dz (33
dx\da=dz\d7, dz\de=dr/\dx, (31) 28 9z
while Egs.(11) are reobtained by inserting and the analogous expression ¢ar, into Egs.(31), and read

016415-4



THREE-DIMENSIONAL SINGULARITIES OF A THIN . .. PHYSICAL REVIEW E64 016415

or Jda T Jda

dG _ dIn(F) g IG  a(uF?)

ax 9z’ 9z Ix’ 39 uar 29 G au (38
Note that in two dimensions Eqél1) and their hodograph \yhich give the nonlinear elliptic equation
transformed form[Eq. (34)] have the same mathematical
structure. In particular they correspond to Cauchy-Riemann #In(F) %(uF?)
conditions for the real and imaginary parts of an analytical = (39
functionW and of its inversaV 1, respectively. Conversely, gr? au?

in three dimensions Eq¥8) and (26) are mathematically ) ) ) )
different: Egs.(8) are algebraic in nature, and are expressedEduations(38) admit factorized solutions of the forms
in terms of Poisson brackets, while Eq26) are best inter-

: - : (C—ul2)¥? C-u
preted geometrically in terms of two pairs of orthogonal sur- F(u,7)= and G(u,7)= (40)
faces [a:a(xvyaz)r T= T(ny,z)] and [ﬁ:B(X,y,Z), T ! TO—T ’ TO_ !
=7(X,Y,2)], such that the vector product of the gradients of
« and B is equal to the gradient of. where 7, and C are integration constants. This solution de-
scribes the “finite time” explosion of a thin spherical shell
IV, SOLUTIONS OF THE 3D THIN SHELL EQUATIONS with radius given by
A. Stationary solutions and linearized equations 2
2 2 2_p2 C
The steady, rigid motion of the thin shell is recovered Xty +z°=R"= (41)

— 2
from Egs.(8) by takingx=«, y= B, andz= 7. This solution (70=7)

is unstable against infinitesimal perturbations, as can b
shown by linearizing Egs(8). This leads to the following
system of equations for the displacement vedétor

ok, ok, ok, &, 0f 9k OE, a=[27(R-2)]Ycos ¢, B=[279(R—2)]"*sin,
_— — = — 4 —

or  da' or B’ 91  da a,B’(35) 42

The variablesx and B are related to the coordinates on the
spherical shell atr=0 as

where ¢ is the polar angle in thg-y plane andry=C. The
inverse dependence of the radRisf the sphere with “time”

V2£,=0 and VZ(9&,/dr)=V4(3&,1dT)=0, (36) 7 can be easily understood in terms of the equaBorR?,

. . which expresses the fact that the total “force” is proportional
where the Laplace operator is taken with respect to the varig the sphere surface. Note that if we expresas the func-
ables, B, and 7. Equations(36) cgrregpond to a linear +tion of t, using Eq.(10), and adopt an equation of the type
dispersion equation of the forf =k3+kj, wherey is the  py7 whereVis the volume inside the hemispherical volume
(normalized mode growth rate ank , are the modenor-  constant andy is a polytropic index, we findRoct¥(37~1),

structural difference between the 2D and 3D equations is not, »c \jth a slow algebraic growth.

seen at this linear level. o _ A different solution which does not exhibit a finite time
In the fully nonlinear case explicit solutions of E48) singularity (in the 7 time variabl@ is given by
are not easy to find. On the contrary, explicit nonlinear solu-

f[ions of the hodograph transformed equations will be given F(7)=F,exp( /),
in Sec. V.

Below we will consider the special case of E¢) cor-
responding to rotational invariance around thaxis which
leads to rotationally Invariant SQ'“F'OHS' In Appendlx Bitis whereF, and 7y are integration constants. This solution de-
shown that Eqs(8) admit self-similar solutions where the ) . .

) . ; scribes the evolution of the paraboloidal shell,
shell velocity components are linear, time dependent func-
tions ofx,y,z (see, e.g., Ref$11,12 and references quoted
therein.

which give

G(u,7)=—ul 7o+ (F2ro/2)exp 27/ 79)/2, (43)

Z—24(7)= _(X2+y2)/(420( 7)), (44)

with zo(r)=(F§TO/2)exp(2n’ro). The variablesx and 8 are
related to the coordinates on the paraboloidal sheta as

If we assume that the shell evolution is rotationally invari-in Eg. (42), with z,(7=0) substituted foR(7=0). The ex-
ant around the axis, we can set ponential dependence of the vertex of the paraboloid on

“time” 7 can be understood in terms of the equatior(x?
37) +y?)xz, which expresses the fact that the force is propor-
tional to the area of the surface around the vertex which, in a
where 2i=a?+ 2. Inserting Eqs.(37) into Egs.(8), we  paraboloid, scales linearly with the vertex positianFor
obtain 70<0, Eq.(43) describes the case where the pressure focal-

B. Rotationally invariant solutions

x=aF(u,7), y=pBF(u,7), and z=G(u,7),
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izes all the matter in the foil on the negatiz@xis at7= .
At 7— — the shell is flat and has a uniform, vanishingly
small, density.

V. SOLUTIONS OF THE 3D HODOGRAPH EQUATIONS ':’3":;"':.:3:523

The geometrical interpretation of the hodograph trans-
formed equations for the 3D thin sheW,7=VaXV}g, in
terms of orthogonal surface¥ -V 7=V B-Vr=0) makes
it easier to find families of explicit solutions. 2

In addition, once a solution is found, we can generate new
solutions by exploiting the invariance of the hodograph
transformed equation®6) under the transformations of the
independent variables

-1

a—atH(B), B—p, (45)
aol(@), fo—b (46
! (dL(a)/da)’ 2

FIG. 1. Time evolution of a small square shell blown along the
negativez according to Eq(48). The position of the shell is shown
at two different times.

whereH andL are arbitrary functions. An analogous invari-
ance holds when the above transformations are appligd to
Exponential-type solutions are obtained by taking

wherep, m, andn, with p=m+n—1, are the orders of the

a=\2 sinx)exp(z/2), polynomials, and the coefficients of the polynomi&sare
restricted by the constraints imposed by E@&). A simple
B= \/Esir(y)exp(z/ J2), (47) class of such solutions correspondsnie-n=2 andp=3.
Using standard index notation and summation over repeated
= \/E Coix)cog(y)exqz\/i), indices, we write
which can be easily inverted, and give 2a=AijxiXj,  2B=Bjjxx; and 6r= TiijininSO)
1 I a?+ B2+ (a®— B?)?+87° where the indices vary from 1 to 3, withy=X, X,=y and
z= 2 n 4 ' Xz=2z. From Eqs.(26), we obtain the condition
(@.8) BriAij — AkkBij + AikBij— BikAkj= 0, (51
«,
(x,y)=arcsi , . . oaa e s
[(a?+ B2) 12+ \[(a?— B2)2l 4+ 272]2 i.e., the commutation conditiofA,B]=(tr A)B—(tr B)A,
(ag  Where trA denotes the trace of the matr and
where we will consider only the plus sign in front of the Tijk= €imA1;Bmk, (52
y P g j j

square root which is defined to be positive. Physically, for h he riaht hand sid b ized with
7<0, this solution can be taken to represent the evolution of/Nere the right hand side must be symmetrized with respect

a small square shell that is pushed alangnd that breaks at to t_he the 'f.‘d'c.es 2y andk, ar_1d €ilm 1S the cqmp!ete!y
antisymmetric Ricci tensor. An interesting solution is given

a=B=0 at =0, having reached= —o as shown in Fig.
1. For notational convenience here and below the time vari®Y

able 7 is ch_osen §uch that=0 _correqunds to th_e time a=(x2=2)2, B=(y*-2)I2,
where the singularity occurs while the initial conditions are

given atr= 7+ 0. The logarithmic dependence of the vertexhich describes a shell that for negativéas the shape of a

of the shell on timer arounda= =0 can be understood in  symmetric(equilateral hyperbolic surface in one octant. The
terms of the equatioms (x?+y?) = 1/rcexp(—zy2), which  density in the shell is proportional tay?+ y2z%+ z2x?) /2.
expresses the fact that the force is proportional to the area @&t 7=0 the position of the shell coincides with its
the surface around the vertex which, in this solution, in-asymptotic quarter-planes and then, after breaking at the ori-

T=xyz, (53

creases exponentially with the vertex positifor z<0. gin, opens into three hyperbolic “petals” in the adjacent
Polynomial solutions are obtained by taking octants, as shown in Fig. 2. This solution generalidesa
special symmetric, nongeneric way as will be discussed in
a=Py(x,y,2), B=Pj(xy,z), 7=PY(xy,2), Sec. VI B the 2D finite time rarefaction singularity given by

(49) Eq. (56) of Ref.[2].
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note that the functiorn in Egs. (54) satisfies, in agreement
with Eq. (18), the Laplace equatioN?7=0. Then we recall
that if Sis a constant vector, ther8(V) 7 is also a solution
of the Laplace operator. Moreover, &is alongz, (S-V)p
=0, with 8 given by Eq.(54), and new “multipolar” solu-
tions of Egs.(26) can be constructed by applying the trans-
formations

e
ik
AR
LT
T

oMr Ma
T——, a—>—— pB—p. (57)

9z™ az™

These solutions can be linearly combineddnB,r space.
When transformed back te,y.z space, they correspond to
nonlinear combinations.

Prolate and oblate ellipsoids can be obtained by applying
the operator

(?2
1+ GE (58

1

FIG. 2. Time evolution of an equilateral hyperbolic shell mov-

ing in the upper left forward octant toward the origin according to . . . .
Eq. (53), and subsequently splitting into three disconnected “pet-10 EQ- (54), with e either positive(prolatg or negative(ob-

als” in the adjacent octants. The position of the shell is shown afate ellipsoid$. We obtain
two different times, before and after breaking.
(X2+y?+2722)2—e(x?+y?—27%)

The well known systems of orthogonal coordinates, that T= > 2. 2.5 ,

: : : : (X+y*+2z9)
are commonly used in mathematical physics, can be rewrit-
ten is such a way as to lead to solutions of E@6). A (59
spherical solution is obtained by setting (X2 +y2+27%)2—3e(x*+y?)

a=1z , B=arctariy/x).
z
=1 =1UC+y*+29)"%  a=cosb=———— 5
(x*+y“+7z°) For small values ofr the ellipsoids become quasispherical.
- For small negative values &we obtain an oblate ellipsoid
B=¢=arctarty/x), (54 that expands4— 0)/collapses f— =) alongz faster than in

the equatorial plane. The collapsing solution develops two
symmetric, hyperbolic, finite time singularities along the
axis. As shown in Fig. @), these singularities arise when the

wherer, 0, and ¢ are the usual spherical coordinates. This
solution can be easily verified, since

Vr=—(1r%e, Va=—(sinbir)e,, collapsing oblate ellipsoid touches an expanding, two-lobed
“internal” surface which, for smallr, is approximately given
VB=1/rsin6)e,, (55 by (x*+y?+2z%)%2=e(x*>+y?—2z%). For small positive val-

ues of e we obtain an expandingr(0)/collapsing ¢
with e the unit vectors along the spherical coordinates. Equa--«) prolate ellipsoid. As shown in Fig.(B), the collapsing

tion (54) can be inverted, and gives solution breaks at a finite time in the equatorial plane devel-
) ) _ oping a ring-shaped hyperbolic singularity when it touches
- sin(arccosa)cosp y= sin(arccosa)sin B . the expanding, doughnut-shaped “internal” surface.
T ' T ' The procedure of differentiating Eq$4) alongz can also

T
(56) be reversed. The first integration with respectztgives a

. , ) new solution corresponding to the well known parabolic co-
It describes an expanding—<« for 7=0 (and a collapsing ordinateg13]

r=0 for r=o0) sphere, and essentially coincides with solu-
tion (41) found in Sec. IV B. Azimuthally modulated solu-

tions with the same time behavior can be constructed by
applying toB in Egs.(54) the transformation given by Eq.

7=In(r+2z), a=r—z, B=arctay/x), (60)

which can inverted fow=0, and gives

(46).

The spherical solutiofiEq. (54)] can now be used as a )
starting point for constructing an infinite linear space of azi- x=1Jaexp(1/2)cosB, y=+/aexp(/2)sing,
muthally symmetric solutions that exploit the well known (61)
properties of the solutions of the Laplace operator. First we z=[exp(7)— a]/2.
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(a) VI. SPATIAL STRUCTURE OF FINITE TIME
f SINGULARITIES

The special solutions of Eq3) and/or of Eqs(26) that
have been obtained in the previous sections display singu-
larities either at finite time or fopr|— . Two types of sin-
gularities appear in these solutions: compression singularities
and rarefaction singularities. The first ones occur when the
shell density becomes infinite and, according to E2R),
correspond to stagnation points where the velocity goes to
zero. These singularities are best described in the frame work
of Egs. (8). The second type of singularities correspond to
rarefaction singularities where the density vanishes and, ac-
cording to Eq(22), V=0, i.e., the velocity diverges. These
singularities are best described in the frame work of Egs.
(26). As discussed in Ref2] the long wavelength approxi-
mation remains valid in the second case, where its accuracy
actually improves close to the singularity, while in the first

R case it loses its validity in the final stage of the development
of the singularity and must therefore be interpreted as de-
(b) scribing an intermediate asymptotic regime.
0.4 A. Finite time compression singularities

Compression singularities occur at the stagnation points
where the shell velocity goes to zero. Then E@.imply
that, at the singularity, the Poisson brackets betwegnand
z vanish, i.e., that locally, y, and z are not independent
functions ofa@ and 8. We assume that the compression sin-
gularity occurs ak=0, y=0, andz=0, corresponding, with
= a proper redefinition of the origin of the coordinates,rto
=0, =0, and 8=0. Then, with a proper choice of the

"0.2 independent variableg and B, the functionsx,y, andz can
be expanded near the compression singularity in the form
0.4 xi~Lia+ Qi(a,B,7), (62
0 0.2 0.4 0.6 0.8 1

R where x;=x,y,z with i=(1,2,3), L; are numerical coeffi-
] ] ] . cients(not all identically zero in the generic casnd Q; are
FIG. 3. Time evolution of the poloidal cross section of an oblateiyee quadratic forms af, 8, and 7. The fact that the linear
(@) and of a prolateb) ellipsoid expanding t—0)/collapsing ¢ terms are all proportional to the same Lagrangian variable

—) according to Eq(59), with e= 3 0.03. The level curves cor- (chosen to bex) and do not depend on express the fact
respond to the position of the poloidal cross section of the e"ipSOid?hat neax=0, y=0, andz=0, x,y, andz are not indepen-

before and after their breaking, which occurs when the ellipsoids . - . .
touch the “inner surface” expanding along thexis (), or equa- dent functions and that the shell velocity vanishes. As in the

torially (b). 2D case discussed in RdR2], cubic terms, not explicitly
included in Eq.(62) will turn out to be important in the

description of a compressional singularity and will be added

At the initial time 7=0 this solution corresponds to a pa- |ater.

raboloid along the negative axis, and with vertices ax With a rotation inx,y,z space and a rescaling, we can

=0, y=0, andz=1/2 which expand exponentially in time makel;=0 for j#1 andL,=1, i.e.,x= to leading order.

toward largez and larger. This solution is essentially equiva- Then, inserting Eq(62) into Egs.(8), we obtain the follow-

lent to the one given by E¢43). ing relationships between the coefficients of the quadratic
Finally we remark that the above solutions are not generigorms 9, :

insofar as they are based on some symmetry property. More

general solutions are difficult to find: for example, the evo-

lution of a triaxial ellipsoid requires extensive algebraic ma- QIT=Q¢ =0k =0, (63
nipulations based on the so called “ellipsoidal coordinates”

used, e.g., in the study of elliptical galaxiesee, e.g., Ref.

[14] Part II). and, taking\ =(«a, ),
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QyT=— ngf, QyT=— QQ’B, tively, A is given in Eq.(66) andC,D, andE are real num-
(64) bers. In the generic cage’ #0 while C' andD can be set
Q3= ngf,gg'fz QQ,B, equal to zero without loss of generality, as this amounts to

employing the variablesy(— C'z/E',z—Day/A) instead of
where the upper indices o@; refer to the corresponding (y.z). Then, at7'=0, and for small values o, i.e., for
(symmetrig coefficients of the quadratic form. EquatiB) smallx, the shell has a cusplike shape in the plane, with
shows that, to first order, the shell dynamics close to thesides given by
singularity has a 2D behavior and that, with the coordinate
choice made above, occurs in tlgez plane. In this local
expansion, the coefficient® {*,05#,0%#, 0%, and
Q5“ remain undetermined. With a further rotation around
in they-z plane we can make ZB'T:O. Then Eqgs(64) lead

32
y

AI

z=*FE’ (69

B. Finite time rarefaction singularities

to
Let us now consider the hodograph transformed equations
Q8h=Q17=0, QEF™=Q8P=—0J", V7=VaXxVa in the neighborhood of a rarefaction singu-
(65) larity (for the sake of simplicity, we assume that it is located
Q5™=—0Q%*, Q57=0Q%". at 7=0, =0, andB=0, corresponding, with a proper re-

definition of the coordinates, ®=0, y=0, andz=0). At
These relationships show that, @a=0, y and z are (qQua-  this point the shell surface density goes to zero, and
dratic conjugate harmonic functions @f and 7. This result VT|(X=0,y:O,z:O):O- Thus, at this singular point, we have
can also be understood by reversing the reasoning leading to
Eq. (11). For a#0, the dependence gfandz on 8 and 7 Va|x=0y=0z-0)* YV Bl(x=0y=0z=0) (70
remains harmonic, but acquires anrdependent linear term.

This harmonic behavior can be expressed in the form e, the surfacesi(x,y,z) and B(x,y,z) are tangent atx

=0,y=0,z=0).
y+iz=A{?+i2Bal, ie., Let us now specify an independent coordinate system
(66) such that, with the standard index notatiars X, lies along
y+iz=A({+iBalA)*=A({)? the common gradient direction; we expaadand 8 around

the singularities
where{=B+i7 and{=8"+i7'={+iBalA, with 8'=p
and 7' =7 for =0 andA=Q%"#; B is a complex number a=ax;+A; xix/2, B=bx+B;xix;/2.  (71)
given by B=0Q%#—iQ%7; and terms proportional te?
are supposed to be included in the as yet undetermined ¢
efficientsQ5"* and Q5.

With a suitable rotation in the-5 plane, and a rescaling, we
%n seta=1 and b=0. Keeping only linear terms
in the product of the gradients, which corresponds to

Equation(66) agrees with the 2D result obtained in Ref. . f o .
[2]. We recall that in the 2D case the behavior around a finit(%éﬁavmj!?%Taufvt%q:%dgxsterms’ the compatibility condi

time compression singularity was analyzed by expanding the

function W(¢) [see Eq(13) of the present papgns B,,+ Bgs=B;,=B3=0. (72)
W(4)=Cp?+Co%+ -, (67)  Using these conditions and integratiRg-, we obtain
whereC, and C; are complex numbers. It was shown that, 7= (Boy— B3g) XoX3/2— Bos(XoXp— X3X3)/2, (73

in agreement with the standard treatment in the theory of

singularitied 15], the essential property of the local represen-i.e., 7 is locally independent ok, and is harmonic in the
tation of the mapping from the Lagrange variables to theperpendicularx,,x; plane. With a rotation in thex,-x;
Euler variables given by E@67) is the cubic dependence on plane, we can put the,x; term in the expression af equal

the space Lagrangian coordinate. This dependence detdén zero. Then we can reinterpret the above results in the
mines the 2D cusplike structure of the shell at the singularityfforms

[see Eq.(48) of Ref.[2]].

In the present 3-D treatment, the cubic terms in the ex- B=Cyz, 7=-C(y*-27%, (74
pression ofy and z cannot be expressed in general as har-
monic functions of3 and 7. Nevertheless, at a critical time a=X+A; jXX/2, (75)

7' =0, retaining linear terms i@, we can include the cubic

terms in the forms whereC=B,3, and 3 as a function ofy andz, is the har-

monic conjugate ofr.
y=A"(B)2+C'(B")® and z=Da(B')2+E'(B')3, We see also rarefaction singularities in three dimensions
have a generic 2D character, and, as found in two dimen-
(68) sions,[see Eq.(56) of Ref.[2]], are described by two qua-
whereA’, C’, andE’ are real inhomogeneous linear func- dratic harmonic conjugate functions. Note that the case when
tions of « that, fora=0, are equal t&A, C, andE, respec- bothVa andV B vanish at the singularity is nongeneric, and
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is described by polynomial solutions of the typesxyz, earities of the shell equations. This can be seen by referring
a=(x2—y?) /2, andB=(y>—z%)/2 (see Sec. Y. This latter  for example to the hodograph transformed equations. In the
solution has a 3D character, but is not structurally stable apresence of an inhomogeneous pressure term, (2gsbe-

its 3D structure is destroyed by making eittérr or VB  come

arbitrarily small but not zero at the singularity. FlaBOVt=Vax Vs 76
al L = a 7

VIl. CONCLUSIONS AND DISCUSSIONS whereF(«, B,t) is defined below Eq(23). At the rarefaction
singularities, wher&'t=0, the two vector¥ « andV B be-

In this paper we have investigated the problem of thegcome tangent as in the uniform pressure case.
formation of singularities in a thin shell in connection with

the nonlinear development of the Rayleigh-Taylor instability ACKNOWLEDGMENTS
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we have used two main approximations. First, as in R&f.

we have restricted our analysis to the long wavelength limit APPENDIX A: 1D GASDYNAMICS IN COORDINATE

where the plasma slab is modeled as a thin shell. Second, we FREE FORM AND THE HODOGRAPH

have assumed that the pressure on the shell remains spatially TRANSFORMATION

homogeneous. We have shown that the different scaling with ) ) ) -

size from two to three dimensions causes the shell evolution FOr @ 1D fluid configuration, where quantities dependckon

equations to be structurally different from their 2D limit. In @ndt only, the continuity equation

particular, they remain nonlinear when expressed in La- 9

. . p Jdpu

grangian variables, contrary to the 2D case. —+—=0 (A1)
The resulting 3D equation has been shown to have inter- gt Ix

esting mathematical properties that make it possible to ex- .

hibit some of the nonlinear 3D behavior of the shell analyti-and the Euler equation

cally, which is remarkable in view of the complexity of the

problem. The formalism of the differential geometry is natu- p

ral for this problem, and makes it possible to construct a

generalization of the hodograph transformation. with densityp, pressure=p(p), and enthalpy=h(p), can
We haye shown that the 3D_she|l equations exhibit bOt.rbe written in the notation of differential forms as

compression and rarefaction singularities. A local analysis

(A2)

qu, ou| L b
ot TYax) Tax Y

around the singular points has indicated that both finite time dp/\dx=d(pu)/\dt, (A3)
compression and rarefaction singularities in three dimensions
have quasi-2D behaviors. The singularity develops along a du/Adx=d(h+u?/2)/\dt. (A4)

curve on the shell and the dynamics of the shell, projected in

the plane perpendicular to this curve at the singularity, isEquations(Al) and (A2) follow by taking x andt as inde-
essentially the same as in two dimensions. Indeed, the coopendent variables, and by expressing the dependent variables
dinate along the curve plays the role of the ignorable coorp andu as functions ofx andt. Taking, insteadp andu as
dinate of the 2D configuration. In particular, compressionindependent variables, and expressirandt as functions of
singularities develop a cusp structure that extends along the andu, we obtain the hodograph transformed equations
curve. Rarefaction singularities open along hyperbolae in the

plane perpendicular to the curve. Genuine 3D singularities &—X—U&—t+ 5_t:0 (AS)
are possible, but have been shown to be structurally unstable. au ou P ap
The limitations of the validity of the long wavelength ap-
proximation were already discussed in Re], and remain ax dh ot ot
essentially the same in three dimensions, that is, this approxi- % + % U u % =0, (AB)

mation is better and better verified in the case of rarefaction

singularities, while it must be interpreted as describing arwhich are linear in the dependent variableandt.
intermediate asymptotics in the case of compression singu-

larities. . . APPENDIX B: SELF-SIMILAR SOLUTIONS
The assumption of a spatially homogeneous pressure term WITH VELOCITY COMPONENTS LINEAR
is obviously more critical. If an inhomogeneity of the pres- IN EULER COORDINATES

sure term develops in time, additional nonlinearities are

present and the shell evolution is altered, as indicated e.g., by Self-similar solutions of the 3D equatio(®) are obtained
Eqg. (23). Nevertheless a regular, nonvanishing, inhomogeby setting

neous pressure term does not modify the 2D character of the o ab

singularities, which is a consequence of the vector nonlin- X' =X4,b(7)X0Xo (B1)
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where x'=x,y,z for i=1,2,3 respectivelyx3 are the La- _
grangian variablesr and 3 for a,b=1,2, respectively, and EI X3,1X1 2= const,
Xy p(7) are three linearly independenx2 symmetric real
matrices that are functions of time and whose coefficients o
satisfy the system of nine coupled ordinary differential equa- E X5 oX} = Cconst,
tions !
(B6)
i — o dikoyd wk i vk o _
Xap=2€"(Xy 1 Xop T X} 1X5), (B2) > [X1 X5+ 2(X] %] =const,
where the dot denotes a derivative with respect,tand ' I
is a completely antisymmetric Ricci tensor. Expressing the o o
symmetric matrix product on its right-hand side as a time 2 (X'MX'Z’Z— X'1_1X'2'2)=O.
dependent combination of the three linearly independent !
symmetric matrices(; ,,, we see that EqiB1) corresponds
to solutions where the velocity components are linear, tim
dependent functions of the Eulerian coordinatgs, andz
In these solutions the variables and B8 are simply labels, v-r=0,
and cannot be interpreted as initial coordinates, and the shell
surface density tends to infinity for=y=z=0 as 1R. ie. to (B7)
Takinga=b=1 in Eq.(B2) and thera=b=2, we obtain

In Eulerian coordinates the above equations correspond to
Ghe orthogonality condition

2 2 2__
X =4eikxi Xk and Xb,=4elxhXE, (B3 Xry"rzi=const
Thus the shell motion corresponds to a complex rotational
motion around a time dependent axis. An elementary solu-
, _ tion is given by the case when all functioisare zero except
2 (Xyp?=const and X (Xy)?=const. (B4)  xI,=sinr, X ,=cosz, andX,=1/4.
' ' More general self-similar solutions can be obtained by

which give

Instead takinga=1 andb=2, we obtain adding, to Eq.(_B7) a time depen(jent linear term in the
Lagrange coordinates and8 and a time dependent constant
X =26 x) XK, (B5)  term, as done, e.g., in RéfL1]. The equations that determine
' o the time behavior of these additional terms depend on the
which, together with Eq9B3), give functionsX, while Egs.(B2) remain unchanged.
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